Evidence on Common Features and Business Cycle Synchronization in Mercosur*

Carlos Enrique Carrasco Gutierrez†
Fábio Augusto Reis Gomes‡

Abstract

The aim of this work is to analyze the business cycles of the Mercosur’s member countries in order to investigate their degree of synchronization. The econometric model uses the Beveridge-Nelson-Stock-Watson multivariate trend-cycle decomposition, taking into account the presence of common features such as common trend and common cycle. Once the business cycles are estimated, their degree of synchronization is analyzed by means of linear correlation in time domain and coherence and phase in frequency domain. Despite the evidence of common features, the results suggest that the business cycles are not synchronized. This may generate an enormous difficulty to intensify the agreements into Mercosur.

Key-words: Mercosur, business cycles, trend-cycle decomposition, common features, spectral analysis.

Jel Codes: C32, E32, F02, F23.

†We are grateful to two referees for useful suggestions which greatly improved the paper. We are indebted to João Issler, Wagner Piazza, Christian Gonzales and Luiz Renato and many seminar participants at the LAMES 2006 - México and the XXVIII Brazilian Meeting of Econometric for helpful discussions and comments. Carlos Enrique also acknowledges financial support from Getulio Vargas Foundation. Any remaining errors are our responsibility alone.

‡FUCAPE Business School, Av. Fernando Ferrari, 1358. Boa Vista,Vitória-ES, Sala 12, CEP: 29075-505. E-mail: carlos.gutierrez@fucape.br.

§Insper Instituto de Ensino e Pesquisa. Address: Rua Quatá, 300, 4º Andar, Sala 422, Vila Olímpia. São Paulo, SP, Brasil - CEP: 04546-042. E-mail: FabioARG@insper.org.br.
1 Introduction

The design of economic blocks, such as the European Union and the Mercosur, has the purpose to amplify society welfare through the unification of economic policies and commercial agreements. According to Backus and Kehoe (1992) and Chistodoulakis and Dimelis (1995), the success of these policies depends on the similarities of the business cycles of the member states. A business cycle is a periodic but irregular up-and-down movement in economic activity, measured by fluctuations in real GDP and other macroeconomic variables. However, in compliance with Lucas (1977), many authors focus the analysis on GDP, defining business cycles as the difference between the actual GDP and its long-run trend.

The aim of this paper is to analyze the business cycles of the Mercosur member countries. The Mercosur or southern common market is a regional trade agreement created in 1991 by the treaty of Asunción. Its members are: Argentina, Brazil, Paraguay, Uruguay and Venezuela, welcomed as the fifth member in 2006. These countries differ in their institutions, economic policies and industrial structures, creating an enormous internal asymmetry in Mercosur (Flores, 2005). Although the block was created in 1991, we will analyze a broader period, from 1951 to 2003. Therefore, if we find evidence in favor of similarity we can safely assume that it cannot be attributed only to Mercosur\(^1\). In fact, an inverse causality is investigated: if the similarities among the countries lead to commercial integration.

In the empirical literature, there is no consensus about how to estimate the trend-cycle components of economic time series and how to analyze the so-called co-movements\(^2\) in their business cycles. In the past decades a rich debate on the abilities of different statistical methods to decompose time series in long-run and short-run fluctuations has taken place (Baxter and King, 1995; Guay and St-Amant, 1996). The Hodrick-Prescott (HP) filter and the linear detrending are the usual univariate methodologies applied. However, these methodologies do not take into account the existence of common features among the economic series. In addition to that, as shown by Harvey and Jaeger (1993), the HP filter can induce spurious cyclicality when applied to integrated data. Therefore, in order to obtain a measure of the business cycles, we employ the Beveridge-Nelson-Stock-Watson (BNSW) multivariate trend-cycle decomposition (Beveridge and Nelson, 1981), considering the occurrence of cointegration and serial correlation common feature among the variables.

In order to investigate the degree of synchronization or co-movement of their business cycles an extra effort is necessary. Many authors have used the linear correlation between cycles; however,

\(^1\) Besides, there is not a consensus that Mercosur led to an increase in the flow of commerce among its integrated parts.

\(^2\) Two countries present comovements when their real GDP expansions and downturns are simultaneous.
this analysis gives a static measure of the co-movements since it is not a simultaneous analysis of
the persistence of co-movement (Engle and Kozick, 1993). To avoid this critique, the measures of
coherence and phase in frequency domain are employed in order to investigate how synchronized the
business cycles are (Wang, 2003). These frequency domain techniques constitute a straightforward
way to represent economic cycles, because they provide information for all frequencies.

Finally, the results indicate the existence of common trends and common cycles among the
economies studied. Thus, we confirm the need to use a multivariate approach, which is our first
contribution. Time domain analysis found synchronization in two sub-groups: Paraguay-Uruguay
and Argentina-Brazil. However, frequency domain findings did not corroborate these results. Thus,
in general, the countries of the Mercosur are not synchronized.

Besides this introduction, the paper is organized as following. Section 2 presents the econometric
methodology. Section 3 reports the econometric results while the section 4 analyzes the degree of
synchronization of the business cycles. Finally, the conclusions are summarized in the last section.

2 Econometric Model

Common features may be seen as restrictions over the dynamics of the countries and, consequently,
over the dynamics of their business cycles. While cointegration refers to long-run relationships,
common cyclical restrictions refer to short-run dynamics. Engle and Kozicki (1993) and Vahid
and Engle (1993) proposed the serial correlation common feature (SCCF) as a measure of common
cyclical feature in the short-run, which is applied in many empirical works. For example, Gouriéroux
and Peaucelle (1993) analyzed some issues on purchase power parity; Campbell and Mankiw (1990)
found a common cycle between consumption and income for most G-7 countries; Engle and Kozicki
(1993) found common international cycles in GNP data for OECD countries; Engle and Issler (2001)
found common cycles among sectoral output for US; Candelon and Hecq (2000) tested the Okun’s
law.

To implement the BNSW decomposition, taking into account the common features restrictions,
a VAR model is estimated and the existence of long-run and short-run common dynamics is tested.
Consider a Gaussian Vector Autoregression of finite order p, VAR(p):

\[y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \ldots + \phi_p y_{t-p} + \varepsilon_t \] \hspace{1cm} (1)

where \(y_t \) is a vector of \(n \) first order integrated series, \(I(1) \), and \(\phi_i, i = 1,\ldots,p \) are matrices of
dimension \(n \times n \) and \(\varepsilon_t \sim Normal(0, \Omega) \), \(E(\varepsilon_t) = 0 \) and \(E(\varepsilon_t \varepsilon_{t+\tau}) = \{ \Omega, \ \text{se} \ t = \tau \ \text{and} \ 0_{n \times n}, \ \text{se} \ t \neq \tau \}; \) where \(\Omega \) is no singular}. The model (1) can be written equivalently as:

\[\Pi(L) y_t = \varepsilon_t \] \hspace{1cm} (2)
where $\Pi(L) = I_n - \sum_{i=1}^{p} \phi_i L^i$ and L represents the lag operator. Besides, $\Pi(1) = I_n - \sum_{i=1}^{p} \phi_i$ when $L = 1$.

2.1 Long run restrictions (Cointegration)

The following hypotheses are assumed:

Proposition 1: The $(n \times n)$ matrix $\Pi(\cdot)$ satisfies:

1. Rank $(\Pi(1)) = r$, $0 < r < n$, such that $\Pi(1)$ can be expressed as $\Pi(1) = -\alpha \beta'$, where α and β are $(n \times r)$ matrices with full column rank r.

2. The characteristic equation $|\Pi(L)| = 0$ has $n - r$ roots equal to 1 and all other are outside the unit circle.

Assumption 1 implies that y_t is cointegrated of order $(1, 1)$. The elements of α are the adjustment coefficients and the columns of β span the cointegration space. Decompounding the polynomial matrix $\Pi(L) = \Pi(1) L + \Pi^*(L) \Delta$, where $\Delta \equiv (1 - L)$ is the difference operator, a Vector Error Correction (VEC) model is obtained:

$$\Delta y_t = \alpha \beta' y_{t-1} + \sum_{j=1}^{p-1} \Gamma_j \Delta y_{t-j} + \varepsilon_t \quad (3)$$

where $\alpha \beta' = -\Pi(1), \Gamma_j = -\sum_{k=j+1}^{p} \phi_k$ ($j = 1, ..., p - 1$) and $\Gamma_0 = I_n$.

2.2 Common cycles restrictions

The VAR(p) model can have short-run restrictions as shown by Vahid and Engel (1993).

Definition 1 Serial Correlation Common Feature holds in (3) if there is a $(n \times s)$ matrix $\tilde{\beta}$ of rank s, whose columns span the cofeature space, such as $\tilde{\beta}' \Delta y_t = \tilde{\beta}' \varepsilon_t$, where $\tilde{\beta}' \varepsilon_t$ is a s-dimensional vector that constitute an innovation process with respect to all information prior to period t.

Consequently, the SCCF restrictions occur if there is a cofeature matrix $\tilde{\beta}$ that satisfies the following assumption:

Proposition 2 $\tilde{\beta}' \Gamma_j = 0_{s \times n} \quad j = 1, ..., p - 1$

Proposition 3 $\tilde{\beta}' \alpha \beta' = 0_{s \times n}$
2.3 Trend-Cycle decomposition

The BNSW trend-cycle decomposition can be introduced by means of the Wold representation of the stationary vector Δy_t given by:

$$\Delta y_t = C(L)\varepsilon_t$$ \hspace{1cm} (4)

where $C(L) = \sum_{i=0}^{\infty} C_i L^i$ is polynomial matrix in the lag operator, $C_0 = I_n$ and $\sum_{i=1}^{\infty} j |C_j| < \infty$. Using the following polynomial factorization $C(L) = C(1) + \Delta C^*(L)$, it is possible to decompose Δy_t such that:

$$\Delta y_t = C(1) \varepsilon_t + \Delta C^*(L) \varepsilon_t$$ \hspace{1cm} (5)

where $C^*_i = \sum_{j>i}^{\infty} (-C_j)$, $i \geq 0$, and $C^*_0 = I_n - C(1)$. Ignoring the initial value y_0 and integrating both sides of (5), we obtain:

$$y_t = C(1) \sum_{j=1}^{T} \varepsilon_t + C^*(L)\varepsilon_t = \tau_t + c_t$$ \hspace{1cm} (6)

Equation (6) represents the BNSW decomposition where y_t is decomposed in “n” random walk process named “stochastic trend” and “n” stationary process named “cycles”. Thus, $\tau_t = C(1) \sum_{j=1}^{T} \varepsilon_t$ and $c_t = C^*(L)\varepsilon_t$ represent trend and cycle components, respectively. Assuming that long-run restrictions exist, then r cointegration vectors exist ($r < n$). These vectors eliminate the trend component which implies that $\beta' C(1) = 0$. Thus, $C(1)$ has dimension $n - r$, which means that there are $n - r$ common trends. Analogously, assuming short-run restrictions, there are s cofeature vectors that eliminate the cycles, $\tilde{\beta}' C^*(L) = 0$, which implies that $C^*(L)$ has dimension $n - s$, which is the number of common cycles. It is worth noting that $r + s \leq n$ and the cointegration and cofeatures vectors are linearly independent (Vahid and Engle, 1993). In order to obtain the common trends, it is necessary (and sufficient) to multiply equation (6) by $\tilde{\beta}'$, such that

$$\tilde{\beta}' y_t = \tilde{\beta}' C(1) \sum_{j=1}^{T} \varepsilon_t = \tilde{\beta}' \tau_t$$

This linear combination does not contain cycles because the cofeatures vectors eliminate them. In the same way, to get the common cycles it is necessary to multiply equation (6) by β', and so

$$\beta' y_t = \beta' C^*(L)\varepsilon_t = \beta' c_t$$

This linear combination does not contain the stochastic trend because the cointegration vectors eliminate the trend component. A special case emerges when $r + s = n$. In this case, it is extremely easy to estimate the trend and cycle components of y_t. As $\tilde{\beta}'$ and β' are linearly independent matrices, it is possible to build a matrix A, such as $A_{n \times n} = (\tilde{\beta}', \beta')'$ has full rank and, therefore,
is invertible. Notice that, the inverse matrix can be partitioned as \(A^{-1} = (\tilde{\beta}^{-} \beta^{-}) \) and the trend and cycle components can be obtained as follows:

\[
y_t = A^{-1} Ay_t = \tilde{\beta}^{-} (\beta' y_t) + \beta^{-} (\beta' y_t) = \tau_t + c_t
\]

This implies that \(\tau_t = \beta^{-} \beta' y_t \) and \(c_t = \beta^{-} \beta' y_t \). Therefore, trend and cycle are linear combinations of \(y_t \). Note that \(\tau_t \) is generated by a linear combination of \(y_t \) using the cofeature vectors, containing the long-run component (because \(\beta' y_t \) is a random walk component). On the other hand, \(c_t \) is generated by a linear combination of \(y_t \) using the cointegration vectors, containing the short-run component (because \(\beta' y_t \) is \(I(0) \) and serially correlated).

2.4 Estimation and testing

Considering the SCCF and the cointegration restrictions, we can rewrite the vector error correction as a model of reduced-rank structure. In (3) we define a vector \(X_{t-1} = [y_{t-1}, \Delta y_{t-1}, \ldots, \Delta y_{t-p+1}]' \) of dimension \((n(p-1)+1) \times 1 \) and a \(n \times (n(p-1)+r) \) matrix \(\Phi = [\alpha, \Gamma_1, \ldots, \Gamma_{p-1}] \). Therefore (3) is written as:

\[
\Delta y_t = \Phi X_{t-1} + \varepsilon_t
\]

If assumptions (1), (2) and (3) hold, then the matrices \(\Gamma_i, i = 1, \ldots, p-1 \) are all of reduced rank \((n-s) \) and they can be written as \(\Phi = A[\Psi_0, \Psi_1, \ldots, \Psi_{p-1}] = A\Psi \), where \(A \) is \(n \times (n-s) \) full column rank matrix and \(\Psi \) has dimension \((n-s) \times (n(p-1)+r) \) and \(\tilde{\beta} A\Psi = 0 \), that is, \(\tilde{\beta} \in sp(A_{\perp}) \) where \(A_{\perp} \) is the orthogonal complement of \(A \). Therefore, let \(A = \tilde{\beta}_{\perp} \).\(^3\) Hence the model (8) can be expressed as a dynamic factor model with \(n - s \) factor, given by \(\Psi X_{t-1} \), which are linear combinations of the right hand side variables in (3).

\[
\Delta y_t = \tilde{\beta}_{\perp} (\Psi_0, \Psi_1, \ldots, \Psi_{p-1}) X_{t-1} + \varepsilon_t
\]

To estimate the coefficient matrices \(\tilde{\beta}_{\perp} \) and \(\Psi \) in the reduced rank model (10) we use the Anderson’s (1951) procedure (see additionally Anderson, 1988, Johansen, 1995). This procedure is based on canonical analysis, which is a special case of a reduced-rank regression. More specifically, the maximum-likelihood estimation of the parameters of the reduced-rank regression model may result a problem of canonical analysis\(^4\). Therefore, we can use the expression \(CanCorr \{X_t, Z_t|W_t\} \)

\[^3\]The orthogonal complement of the \(n \times s \) matrix \(B \), \(n > s \) and rank(\(B \)) = \(s \), is the \(n \times (n-s) \) matrix \(B_{\perp} \) such that \(B_{\perp}' B = 0 \) and rank(\(B : B_{\perp} \)) = \(n \). Hence, \(B_{\perp} \) spans the null space of \(B \) and \(B' \) spans the left null space of \(B_{\perp} \). The space is denoted by \(sp \).

\[^4\]This estimation is referred as Full Information Maximum Likelihood - FIML.
that denotes the partial canonical correlations between X_t and Z_t: both sets concentrate out the effect of W_t that allows us to obtain canonical correlation, represented by the eigenvalues $\hat{\lambda}_1 > \hat{\lambda}_2 > \hat{\lambda}_3 \ldots > \hat{\lambda}_n$.

By the way, the Johansen’s cointegration test statistic is also based on canonical correlation. In model (3) we can use the expression $CanCorr \{ \Delta y_t, y_{t-1} | W_t \}$ where $W_t = [\Delta y_{t-1}, \Delta y_{t-2}, \ldots, \Delta y_{t+p-1}]$ that summarizes the reduced-rank regression procedure used in the Johansen approach. It means that one extracts the canonical correlations between Δy_t and y_{t-1}: both sets concentrated out the effect of lags of W_t.

Moreover, we could also use a canonical correlation approach to determine the rank of the common features space due to SCCF restrictions. It is a test for the existence of cofeatures in the form of linear combinations of the variables in first differences, which are white noise (i.e., $\beta' \Delta y_t = \beta' \varepsilon_t$ where $\beta' \varepsilon_t$ is a white noise). Based on Tiao and Tsay (1985), Vahid and Engle (1993) proposed a sequential test for SCCF, assuming that the rank of β is known. The sequence of hypotheses to be tested are: $H_0 : \text{rank} (\tilde{\beta}) \geq s$ against $H_a : \text{rank} (\tilde{\beta}) < s$, (see Lütkepohl, 1993; Velu et al, 1986) starting with $s = 1$ against the alternative model with $s = 0$ (there is no common cycle). If the null hypotheses is not rejected, we implement the test for $s = 2$, and so on.

In the VEC model the significance of the s smallest eigenvalues is determined through the following statistic:

$$\xi_s = - T \sum_{i=1}^{s} Ln (1 - \lambda_i^2) \sim \chi^2_v, \quad s = 1, \ldots, n - r$$ \hspace{1cm} (11)

$\lambda_1 < \lambda_2 \ldots, < \lambda_{n-r} < 1$, with $v = s \left[n(p-1) + r \right] - s(n-s)$ degrees of freedom, where n is the dimension of the system and p the lag order of the VAR model.\(^5\) Suppose that the statistical test (11) has found s independent linear combinations of the elements of Δy_t unpredictable. This implies that there is an $n \times s$ matrix $\tilde{\beta}$ of full rank s with s eigenvectors associated with the s smallest eigenvalues. Reinsel and Ahn (1992) propose a correction in statistic (11) in small samples

$$\xi_{s}^{corr} = \frac{T-n(p-1)-r}{T} \xi_s,$$

where T is the real number of observations after the deduction of initial points in regressions containing lags.

\(^5\)For $p = 1$ the degrees of freedom is $(r+s)^2$. Notice in the model $\Delta y_t = \alpha \beta' y_{t-1} + \varepsilon_t$, the $\text{rank}(\alpha \beta') = \tilde{r} = n-s-r$, hence $v = (n-\tilde{r}) \times (np-\tilde{r}) = (n-(n-s-r))^2 = (r+s)^2$.

7
3 Empirical results

3.1 Database

The database used was extracted from Penn World Table, corresponding to Real GDP per capita series of Mercosur countries.6 The frequency is annual, ranging from 1951 to 2003.7 We consider the model $Y_t = T_t C_t$, where C_t is the cycle and T_t the trend of the series. Define $y_t \equiv \log Y_t$, $\tau_t \equiv \log T_t$ and $c_t \equiv \log C_t$. Then, $y_t = \tau_t + c_t$. The Figure I reports the GDP expressed in log terms. After 1975, in general, the series become closer - a behavior that may be generated by a common trend. Figure II the growth rates of real gross domestic product, i.e., $\ln (Y_t/Y_{t-1})$. It is possible to see the recession in Argentina, in 1989-1990.

Figure I. Real GDP (in log) per capita series of Mercosur countries (1951-2003)

6Heston, Robert Summers and Bettina Aten, Penn World Table Version 6.2, Center for International Comparisons at the University of Pennsylvania (CICUP). Real GDP per capita (Constant Prices: Chain series).

Figure II. The growth rates of the real GDP per capita series of Mercosur countries (1951-2003)

Table I displays the descriptive statistics of the real GDP growth rates. In general, the average growth rate is very lower; the exception is Brazil (2.63%). Indeed, the Figure I showed that Brazil had the lowest income level in 1951 and becomes an intermediated country in 2003. Figure I also showed a kind of convergence of Paraguay toward rich countries. Indeed, Paraguay has the second largest growth rate (1.24%). The other countries are below the 1% rate. While Brazil and Paraguay show an up-award trend, the other countries oscillated around a similar level and the standard deviation reflects these behaviors. Argentina, Uruguay and Venezuela are more volatile than Brazil and Paraguay. All countries experienced years of high growth, some of them above 10%, like Argentina and Brazil; but, episodes of sharp decreases are also present.

<table>
<thead>
<tr>
<th></th>
<th>Argentina</th>
<th>Brazil</th>
<th>Paraguay</th>
<th>Uruguay</th>
<th>Venezuela</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.65%</td>
<td>2.63%</td>
<td>1.24%</td>
<td>0.64%</td>
<td>0.39%</td>
</tr>
<tr>
<td>Standard Dev.</td>
<td>5.40%</td>
<td>3.79%</td>
<td>3.16%</td>
<td>5.38%</td>
<td>5.23%</td>
</tr>
<tr>
<td>Maximum</td>
<td>10.15%</td>
<td>10.08%</td>
<td>8.00%</td>
<td>9.56%</td>
<td>8.25%</td>
</tr>
<tr>
<td>Minimum</td>
<td>-11.16%</td>
<td>-7.12%</td>
<td>-4.55%</td>
<td>-16.05%</td>
<td>-11.82%</td>
</tr>
</tbody>
</table>
3.2 Common Features results

To implement the methodology previously stated, a hierarchical procedure is followed to estimate the parameter of the model (see, Vahid and Engle, 1993). First, the VAR order, \(p \), is estimated via information criteria: Akaike (AIC), Schwarz (SC) and Hannan-Quinn (HQ) (Lütkepohl, 1993). After that, we identify the number of long-run restrictions, \(r \), through Johansen cointegration test. Then the number of short-run restrictions due to SCCF, \(s \), is estimated using \(\chi^2 \) test. Finally, the parameters are estimated in model (3) using the FIML procedure (Vahid and Issler (1993)).

Since BNSW decomposition assumes that the series are \(I(1) \), we begin the analysis using the augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and DF-GLS unit root tests. In addition, we apply the KPSS procedure, which differently from previous tests, has a stationary null hypothesis. The results for all countries are reported in Table II.8 The ADF, PP and DF-GLS tests do not reject the unit root null hypothesis, at 5% level of significance, for all countries. At 5% level, the KPSS do not reject the stationarity null hypothesis only for Uruguay. Even in this case, at 10% level, the null hypothesis is rejected. After all, the results suggests that series are \(I(1) \).

<table>
<thead>
<tr>
<th>Country</th>
<th>ADF</th>
<th>PP</th>
<th>DF-GLS</th>
<th>KPSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>-1.8691</td>
<td>-1.9276</td>
<td>-1.9447</td>
<td>0.1543**</td>
</tr>
<tr>
<td>Brazil</td>
<td>-0.2404</td>
<td>-0.4308</td>
<td>-0.5998</td>
<td>0.2411***</td>
</tr>
<tr>
<td>Paraguay</td>
<td>-0.5757</td>
<td>-0.7392</td>
<td>-1.0805</td>
<td>0.1475**</td>
</tr>
<tr>
<td>Uruguay</td>
<td>-2.6644</td>
<td>-2.0443</td>
<td>-2.5328</td>
<td>0.1433*</td>
</tr>
<tr>
<td>Venezuela</td>
<td>-1.0972</td>
<td>-1.0780</td>
<td>-0.8094</td>
<td>0.2318***</td>
</tr>
</tbody>
</table>

Note: *, **, *** means rejection at 10%, 5% and 1% level of significance.

To estimate the order of the VAR, the AIC, HQ and SC information criteria are used. Table III shows the results for \(p \in \{1, 2, 3, 4, 5\} \). As the data are annual we consider that an upper bound of 5 lags is sufficient. We observe that the three criteria suggest \(p = 1 \), indicating a VAR(1)

\[8\]In the case of ADF and DF-GLS tests, the choice of lags of the dependent variable in the right side of the test equation is based on the Schwarz criterion. In the PP and KPSS tests we use the nucleus of Bartlett and the window of Newey-West. All test equations have a constant and a linear trend. In any case, the results are robust to exclude of the linear trend.
model. Although the p selected by the criteria was one, to check the robustness of the results, we additionally test the model for $p = 2$ and $p = 3$.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ</td>
<td>-17.9852*</td>
<td>-17.5135</td>
<td>-17.1006</td>
<td>-16.7753</td>
<td>-16.3811</td>
</tr>
</tbody>
</table>

Note: * indicates the lag suggested by information criteria

Considering $p = 1, 2, 3$ the usual diagnostic tests are applied in order to verify if these specifications are suitable. For $p = 1$ and $p = 2$ the LM test does not indicate the presence of serial autocorrelation in the residuals, at 5% level of significance. On the other hand, for $p = 3$ the opposite result is obtained. The White heteroskedasticity test (without cross terms) does not find evidence of heteroskedasticity, at 5% level of significance, for $p = 1, 2, 3$. The Jarque-Bera normality test does not reject the null hypothesis of normal distribution of residuals only for $p = 1$, at 5% level of significance. Consequently, the best specification is obtained when $p = 1$.

To test if the series are cointegrated, the Johansen’s (1988) procedure is used. We introduced a constant in the cointegration equation. In Table IV the results for the cointegration test are shown. The trace and the maximum eigenvalue test indicate $r = 2$ for $p = 1, 2$ while for $r = 1$ for $p = 3$. Even though, we use $r = 2$ for $p = 3$ to check robustness of the subsequent analysis.

Table V shows the SCCF test for $p = 1, 2, 3$ using the correction given by Reinsel and Ahn (1992). For $p = 1$ the test indicates that $s = 4$, at 5% level of significance, but as the p-value is close to 5% we may assume $s = 3$ without trouble (see Table V (a)). For $p = 2, 3$ the test indicates $s = 3$ (see Table V (b) e (c)). Therefore, in all cases $s + r = n$. These results confirm the necessity to use a multivariate approach to identify the business cycles. In the next section we analyze the economic cycles obtained from the BNSW decomposition, considering the common cycles and the common trend restrictions. Once $s + r = n$, it is possible to find the trend and cycle components as shown above. Figure III shows the common cycles for each value of p. We observe that for $p = 1, 2$ common cycles are very similar.

9 The null hypothesis of the LM test is the absence of serial correlation until the lag h. We consider h from 1 to 5.

10 The normality test uses the orthogonalization of Cholesky.
Table IV. Johansen’s cointegration test

\(\text{a) Johansen cointegration test for } p = 1 \)

<table>
<thead>
<tr>
<th>Null hypothesis</th>
<th>Trace Test</th>
<th>Maximum Eigenvalue Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>Critical value</td>
</tr>
<tr>
<td>(r = 0)</td>
<td>103.2097*</td>
<td>69.81889</td>
</tr>
<tr>
<td>(r \leq 1)</td>
<td>50.46258*</td>
<td>47.85613</td>
</tr>
<tr>
<td>(r \leq 2)</td>
<td>17.15536</td>
<td>29.79707</td>
</tr>
<tr>
<td>(r \leq 3)</td>
<td>5.387311</td>
<td>15.49471</td>
</tr>
<tr>
<td>(r \leq 4)</td>
<td>1.297025</td>
<td>3.841466</td>
</tr>
</tbody>
</table>

Note: *indicates rejection of null hypothesis, at 5% level of significance

\(\text{b) Johansen cointegration test for } p = 2 \)

<table>
<thead>
<tr>
<th>Null hypothesis</th>
<th>Trace Test</th>
<th>Maximum Eigenvalue Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>Critical value</td>
</tr>
<tr>
<td>(r = 0)</td>
<td>95.68994*</td>
<td>69.81889</td>
</tr>
<tr>
<td>(r \leq 1)</td>
<td>57.55814*</td>
<td>47.85613</td>
</tr>
<tr>
<td>(r \leq 2)</td>
<td>21.27933</td>
<td>29.79707</td>
</tr>
<tr>
<td>(r \leq 3)</td>
<td>9.858185</td>
<td>15.49471</td>
</tr>
<tr>
<td>(r \leq 4)</td>
<td>2.831751</td>
<td>3.841466</td>
</tr>
</tbody>
</table>

Note: *indicates rejection of null hypothesis, at 5% level of significance

\(\text{c) Johansen cointegration test for } p = 3 \)

<table>
<thead>
<tr>
<th>Null hypothesis</th>
<th>Trace Test</th>
<th>Maximum Eigenvalue Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>Critical value</td>
</tr>
<tr>
<td>(r = 0)</td>
<td>96.33886*</td>
<td>69.81889</td>
</tr>
<tr>
<td>(r \leq 1)</td>
<td>46.64570</td>
<td>47.85613</td>
</tr>
<tr>
<td>(r \leq 2)</td>
<td>22.46842</td>
<td>29.79707</td>
</tr>
<tr>
<td>(r \leq 3)</td>
<td>8.952108</td>
<td>15.49471</td>
</tr>
<tr>
<td>(r \leq 4)</td>
<td>1.887672</td>
<td>3.841466</td>
</tr>
</tbody>
</table>

Note: *indicates rejection of null hypothesis, at 5% level of significance
Table V. Common cycle test.

a) \(r = 2, n = 5, p = 1 \) (constant)

<table>
<thead>
<tr>
<th>Null hypothesis</th>
<th>(\lambda^2)</th>
<th>(\xi_{(p,s)})</th>
<th>([r + s]^2)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s > 0)</td>
<td>0.0246</td>
<td>1.2971</td>
<td>9</td>
<td>0.9984</td>
</tr>
<tr>
<td>(s > 1)</td>
<td>0.0756</td>
<td>5.3875</td>
<td>16</td>
<td>0.9935</td>
</tr>
<tr>
<td>(s > 2)</td>
<td>0.2025</td>
<td>17.1553</td>
<td>25</td>
<td>0.8761</td>
</tr>
<tr>
<td>(s > 3)</td>
<td>0.4730</td>
<td>50.4638</td>
<td>36</td>
<td>0.0554</td>
</tr>
<tr>
<td>(s > 4^*)</td>
<td>0.6373</td>
<td>103.2064</td>
<td>49</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Note: *indicates rejection of null hypothesis, at 5% level of significance

b) \(r = 2, n = 5, p = 2 \) (constant)

<table>
<thead>
<tr>
<th>Null hypothesis</th>
<th>(\lambda^2)</th>
<th>(\xi_{(p,s)}^{corr})</th>
<th>(s [n(p-1) + r] + s^2 - sn)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s > 0)</td>
<td>0.0059</td>
<td>0.2606</td>
<td>3</td>
<td>0.9673</td>
</tr>
<tr>
<td>(s > 1)</td>
<td>0.1215</td>
<td>5.9605</td>
<td>8</td>
<td>0.6517</td>
</tr>
<tr>
<td>(s > 2)</td>
<td>0.1856</td>
<td>14.9927</td>
<td>15</td>
<td>0.4519</td>
</tr>
<tr>
<td>(s > 3^*)</td>
<td>0.5996</td>
<td>55.2643</td>
<td>24</td>
<td>0.0003</td>
</tr>
<tr>
<td>(s > 4^*)</td>
<td>0.6781</td>
<td>105.1426</td>
<td>35</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Note: *indicates rejection of null hypothesis, at 5% level of significance

c) \(r = 2, n = 5, p = 3 \) (constant)

<table>
<thead>
<tr>
<th>Null hypothesis</th>
<th>(\lambda^2)</th>
<th>(\xi_{(p,s)}^{corr})</th>
<th>(s [n(p-1) + r] + s^2 - sn)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s > 0)</td>
<td>0.0644</td>
<td>2.5316</td>
<td>8</td>
<td>0.9602</td>
</tr>
<tr>
<td>(s > 1)</td>
<td>0.2441</td>
<td>13.1665</td>
<td>18</td>
<td>0.7816</td>
</tr>
<tr>
<td>(s > 2)</td>
<td>0.4422</td>
<td>35.3461</td>
<td>30</td>
<td>0.2303</td>
</tr>
<tr>
<td>(s > 3^*)</td>
<td>0.6317</td>
<td>73.3036</td>
<td>44</td>
<td>0.0036</td>
</tr>
<tr>
<td>(s > 4^*)</td>
<td>0.7392</td>
<td>124.3791</td>
<td>60</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Note: *indicates rejection of null hypothesis, at 5% level of significance
Figure III- Common Cycles.

Figure IV. Cyclical components for $p = 1$, $s = 3$ and $r = 2$.

Figure IV shows the business cycle components for our best specification: $p = 1$, $s = 3$ and $r = 2$. We notice an enormous contraction in Argentina in 1990’s, as expected. As for Brazil, the
period of the economic miracle is apparent. To analyze the robustness of the results we estimate business cycles for each country for \(p = 1, 2, 3 \). Figure V shows the business cycle for each country. It is possible to see that the business cycles obtained from different \(p \) are similar.

Figure V. Cyclical components in each country for \(p = 1 \), \(p = 2 \) and \(p = 3 \).

4 Business cycle analysis

The degree of association among the contemporaneous movements may be measured through the pairwise linear correlation as reported in Table VI for \(p = 1, 2, 3 \). We can observe for \(p = 1 \) that Paraguay and Uruguay have high positive correlation. The same occurs for Brazil and Argentina. So far, based on correlation analysis there are two pairs of countries with similar patterns. The correlations of each country with the cycles 1 and 2 explain these results. Paraguay and Uruguay have a negative correlation with both cycles, while Brazil and Argentina are negatively related to both cycles. Not surprisingly, Venezuela has a different behavior, being negatively correlated with the first cycle and positively with the second cycle.

For \(p = 1 \), it is worth mentioning that Argentina has correlation with common cycle 1 near to 1 while Uruguay has a correlation near to \(-1\), which means that basically Argentina and Paraguay
are in opposite directions. When Argentina is booming, there is a recession in Uruguay. Indeed, the linear correlation between Argentina and Paraguay is almost -1. In addition, Brazil has a correlation with common cycle 2 almost equal to 1, while Paraguay has a correlation to common cycle 2 around -1. Not surprisingly, the linear correlation between Brazil and Paraguay is almost -1. So far, we know that the pairs Argentina-Brazil and Paraguay-Uruguay seems to be very connected, while the pairs Argentina-Uruguay and Brazil-Paraguay seems to be in opposite direction, which is also relevant information.

Despite the fact that $p = 1$ is our best specification, the association between Paraguay and Uruguay remains high for $p = 2, 3$. However, the association between Brazil and Argentina plunged for $p = 3$. The correlations with the common cycles are robust in the following sense: Paraguay and Uruguay has a negative correlation with both cycles for $p = 1, 2, 3$ while Brazil and Argentina are negatively related to both cycles for $p = 1, 2, 3$. Venezuela results are more sensitive to p. Indeed, for $p = 3$, its correlation with the first common cycle becomes positive, although close to zero.

Table VI. Linear correlations in business cycles and in common cycle

<table>
<thead>
<tr>
<th>Countries</th>
<th>Argentina</th>
<th>Brazil</th>
<th>Paraguay</th>
<th>Uruguay</th>
<th>Venezuela</th>
<th>C. Cycle 1</th>
<th>C. Cycle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9994</td>
<td>0.6165</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.6383</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td>0.6110</td>
<td>0.9996</td>
</tr>
<tr>
<td>Paraguay</td>
<td>-0.7476</td>
<td>-0.9885</td>
<td>1.0000</td>
<td></td>
<td></td>
<td>-0.7239</td>
<td>-0.9838</td>
</tr>
<tr>
<td>Uruguay</td>
<td>-0.9944</td>
<td>-0.5533</td>
<td>0.6731</td>
<td>1.0000</td>
<td></td>
<td>-0.9975</td>
<td>-0.5297</td>
</tr>
<tr>
<td>Venezuela</td>
<td>-0.2806</td>
<td>0.5597</td>
<td>-0.4277</td>
<td>0.3806</td>
<td>1.0000</td>
<td>-0.3140</td>
<td>0.5827</td>
</tr>
<tr>
<td>VAR(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9910</td>
<td>0.5637</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.6306</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td>0.5212</td>
<td>0.9965</td>
</tr>
<tr>
<td>Paraguay</td>
<td>-0.6536</td>
<td>-0.9995</td>
<td>1.0000</td>
<td></td>
<td></td>
<td>-0.5466</td>
<td>-0.9936</td>
</tr>
<tr>
<td>Uruguay</td>
<td>-0.9926</td>
<td>-0.7201</td>
<td>0.7406</td>
<td>1.0000</td>
<td></td>
<td>-0.9675</td>
<td>-0.6597</td>
</tr>
<tr>
<td>Venezuela</td>
<td>-0.7706</td>
<td>0.0088</td>
<td>0.0213</td>
<td>0.6876</td>
<td>1.0000</td>
<td>-0.8488</td>
<td>0.0921</td>
</tr>
<tr>
<td>VAR(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.9824</td>
<td>0.5526</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.2604</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td>0.4360</td>
<td>0.9486</td>
</tr>
<tr>
<td>Paraguay</td>
<td>-0.7832</td>
<td>-0.8042</td>
<td>1.0000</td>
<td></td>
<td></td>
<td>-0.8855</td>
<td>-0.9510</td>
</tr>
<tr>
<td>Uruguay</td>
<td>-0.9547</td>
<td>0.0387</td>
<td>0.5627</td>
<td>1.0000</td>
<td></td>
<td>-0.8824</td>
<td>-0.2796</td>
</tr>
<tr>
<td>Venezuela</td>
<td>-0.1772</td>
<td>0.9041</td>
<td>-0.4731</td>
<td>0.4620</td>
<td>1.0000</td>
<td>0.0096</td>
<td>0.7223</td>
</tr>
</tbody>
</table>
Once the analysis through linear correlation gives a static measure of the co-movements, as noted by Engle and Kozicki (1993), we complement this analysis using techniques based on the frequency domain. Two measures are employed in frequency domain: coherence and phase.\footnote{11}{See Appendix B.}

The coherence between two time series is a measure of the degree to which the series are jointly influenced by cycles of frequency w. Coherence belongs to the interval $[0,1]$. If two time series have perfect linear correlation (positive or negative) the coherence is equal to one. It happens because the same cycles of frequency w are present in both time series. The phase spectrum measures phase difference between two cycles at frequency w. Two oscillators that have the same frequency and different phases have a phase difference, and the oscillators are said to be out of phase with each other.

In summary, we can define co-movements using information in time and frequency domains. Therefore, two time series are synchronized when they have a positive linear correlation, their coherence is close to one and their phase difference is close to zero at each frequency w. Two cases where one of this condition fails is shown in Figure VII where the pairs Argentina-Uruguay and Brazil-Paraguay have coherence close to one and phase close to zero, but the first condition is not satisfied which means that they have a high negative linear correlation (see Table VII). Indeed, we commented that while Argentina is almost identical to common cycle 1, Uruguay is almost minus common cycle 1. The same happens for Brazil and Paraguay, but in relation to common cycle 2.

Given that, we focus our analysis on the sub-groups identified by the time domain approach. Two groups have high positive linear correlation; i) Brazil and Argentina (0.6383 for $p = 1$) and ii) Paraguay and Uruguay (0.6731 for $p = 1$). Results for $p = 2, 3$ are also reported.

Figures VI to IX show the coherence and phase between pairs of the business cycles of the Mercosur members\footnote{12}{The coherence is estimated using the the \textit{mscohere} function of Matlab 7.0 which considers smoothed with Hamming window of 30 with 50\% overlap. The function \textit{cpsd} is used to estimate the Cross Power Spectral Density (CPSD) via Welch’s method.}. These pictures show values of coherence varying between zero and one (vertical axis) for each value of frequency (horizontal axis). Values of phase (vertical axis) are calculated for each value of frequency (horizontal axis). At the final point of the horizontal axis, the frequency 0.5 corresponds to period of two years, the point 0.25 corresponds to four years, and frequency 0.1 corresponds to ten years, and so on.
The first row of Figure VI shows the ideal values of coherence and phase are shown, that is, coherence one and phase zero in all frequencies. For example, this picture shows results for synchronization of business cycle of Argentina with himself at each value p, and, after, the same is made for Brazil and Paraguay.

Figure VI also shows results of coherence and phase for first group: Argentina and Brazil. Focusing on $p = 1$, the coherence are close to one for some frequencies; however, the phase are not close to zero in most frequencies. Thus, when we scrutinized the time domain results, using frequency domain tools, the degree of association between Argentina and Brazil is severely reduced. The results are similar for $p = 2, 3$.

Figure VIII reports the results of coherence and phase for the second group; Uruguay and Paraguay. For $p = 1$, Uruguay and Paraguay has coherence close to one for some frequencies; however, their phase is, in general, far from zero. Thus, this deeper analysis in frequency domain casts doubts on the Uruguay-Paraguay association. Qualitatively, the results are the same for $p = 2, 3$. Hence, the findings suggested no association between this pair.
Therefore, the lack of synchronization among the business cycles illustrates the importance to conduct this analysis in frequency domain. Last, Appendix A present the results for other pairs of countries.

5 Conclusion

The design of economic blocks is based on the harmonization of economic and commercial policies. However, as argued by Backus and Kehoe (1992) and Chistodoulakis and Dimelis (1995), this harmonization is well succeeded when the member states are sufficiently similar. If this is true, it is of utmost importance to analyze the dynamics of the members and investigate the degree of synchronization of their business cycles. Regarding the Mercosur, it is common to see in the media discussions on the intensification of this economic block. However, it is not usual to argue which the necessary conditions for this intensification are and if they are valid. Considering the members of Mercosur (Argentina, Brazil, Paraguay, Uruguay and Venezuela), this paper analyzes if there are any common dynamic in their economies and if their business cycles are synchronized.
To implement the analysis we estimate a VAR model and test the presence of common trends and common cycles. Using the BNSW trend-cycle decomposition, the business cycles were estimated, taking in account the cointegration and serial correlation common feature restrictions. In addition, beyond the usual correlation analysis, measures of coherence and phase, in the frequency domain, are used to examine the degree of co-movements in business cycles.

The results suggest that there are three common trends and two common cycles among the countries. These results confirm the necessity to use a multivariate approach to obtain the business cycles, the first contribution of this work. Time domain results identified evidence of co-movements in two sub-groups: Paraguay-Uruguay and Argentina-Brazil. However, frequency domain tools casts doubts on the synchronization of these pairs. Hence, the lack of synchronism or symmetry in the business cycle of Mercosur makes difficult a greater integration into this economic block.
References

21

APPENDIX A : COHERENCE AND PHASE RESULTS

Figure VIII. Coherence and Phase

Figure IX. Coherence and Phase
APPENDIX B : COHERENCE AND PHASE

Consider a vector of two stationary variables $y_t = (X_t, Y_t)$. Let $S_{YY}(w)$ represent the population spectrum of Y and $S_{YX}(w)$ the population cross spectrum between X, Y. The population cross spectrum can be written in term of its real and imaginary components as $S_{YX}(w) = C_{YX}(w) + i Q_{YX}(w)$, where $C_{YX}(w)$ and $Q_{YX}(w)$ are labeled the population cospectrum and population quadrature spectrum between X, Y respectively. The population coherence between X and Y is a measure of the degree to which X and Y are jointly influenced by cycles of frequency w.

$$h_{YX}(w) = \frac{|C_{YX}(w)|^2 + |Q_{YX}(w)|^2}{S_{YY}(w) S_{XX}(w)}$$

Coherence takes values in $0 \leq h_{YX}(w) \leq 1$. A value of one for coherence at a particular point means the two series are altogether in common at that frequency or cycle; if coherence is one over the whole spectrum then the two series are common at all frequencies or cycles. The cross spectrum is in general complex, and may express in its polar form as:

$$S_{YX}(w) = C_{YX}(w) + i Q_{YX}(w) = R(w) \exp(i \theta(w))$$

where $R(w) = \left\{\left[|C_{YX}(w)|^2 + |Q_{YX}(w)|^2\right]^{\frac{1}{2}}\right\}$ and $\theta(w)$ represent the gain and the angle in radians at the frequency w. The angle satisfies $\tan(\theta(w)) = \frac{Q_{YX}(w)}{C_{YX}(w)}$. More details in Hamilton (1994).